The Eucalyptus grandis NBS-LRR Gene Family: Physical Clustering and Expression Hotspots
نویسندگان
چکیده
Eucalyptus grandis is a commercially important hardwood species and is known to be susceptible to a number of pests and pathogens. Determining mechanisms of defense is therefore a research priority. The published genome for E. grandis has aided the identification of one important class of resistance (R) genes that incorporate nucleotide binding sites and leucine-rich repeat domains (NBS-LRR). Using an iterative search process we identified NBS-LRR gene models within the E. grandis genome. We characterized the gene models and identified their genomic arrangement. The gene expression patterns were examined in E. grandis clones, challenged with a fungal pathogen (Chrysoporthe austroafricana) and insect pest (Leptocybe invasa). One thousand two hundred and fifteen putative NBS-LRR coding sequences were located which aligned into two large classes, Toll or interleukin-1 receptor (TIR) and coiled-coil (CC) based on NB-ARC domains. NBS-LRR gene-rich regions were identified with 76% organized in clusters of three or more genes. A further 272 putative incomplete resistance genes were also identified. We determined that E. grandis has a higher ratio of TIR to CC classed genes compared to other woody plant species as well as a smaller percentage of single NBS-LRR genes. Transcriptome profiles indicated expression hotspots, within physical clusters, including expression of many incomplete genes. The clustering of putative NBS-LRR genes correlates with differential expression responses in resistant and susceptible plants indicating functional relevance for the physical arrangement of this gene family. This analysis of the repertoire and expression of E. grandis putative NBS-LRR genes provides an important resource for the identification of novel and functional R-genes; a key objective for strategies to enhance resilience.
منابع مشابه
Genetic Diversity and Population Structure of Iranian tulips revealed by EST-SSR and NBS-LRR Markers
The genus Tulipa L. (Liliaceae) comprises about 100 species and Iran is considered as one of the main origins of tulips. In this research, genetic diversity and population structure of 27 wild populations of tulips collected from Iran were studied by 15 highly polymorphic and reproducible expressed sequenced tag-simple sequence repeat (EST-SSR) markers and 8 nucleotide binding site (NBS)-enzyme...
متن کاملRecombination Rate Heterogeneity within Arabidopsis Disease Resistance Genes
Meiotic crossover frequency varies extensively along chromosomes and is typically concentrated in hotspots. As recombination increases genetic diversity, hotspots are predicted to occur at immunity genes, where variation may be beneficial. A major component of plant immunity is recognition of pathogen Avirulence (Avr) effectors by resistance (R) genes that encode NBS-LRR domain proteins. Theref...
متن کاملGenome-Wide Analysis of NBS-LRR Genes in Sorghum Genome Revealed Several Events Contributing to NBS-LRR Gene Evolution in Grass Species
The nucleotide-binding site (NBS)-leucine-rich repeat (LRR) gene family is crucially important for offering resistance to pathogens. To explore evolutionary conservation and variability of NBS-LRR genes across grass species, we identified 88, 107, 24, and 44 full-length NBS-LRR genes in sorghum, rice, maize, and Brachypodium, respectively. A comprehensive analysis was performed on classificatio...
متن کاملStudy of new NBS-LRR genes analogues in cucurbits native types in Iran
Nucleotide binding site leucine-rich repeats (NBS-LRR) accounting for the main disease resistance proteins play an important role in plant defense against pathogen attack. The current study aimed to identify new NBS-LRR gene members in native types of cucurbit species in Iran. Accordingly, DNAs of melon, cucumber and cantaloupe native types to Iran were identified using three primer pairs. PCR ...
متن کاملGenome-wide identification and tissue-specific expression analysis of nucleotide binding site-leucine rich repeat gene family in Cicer arietinum (kabuli chickpea)
The nucleotide binding site-leucine rich repeat (NBS-LRR) proteins play an important role in the defense mechanisms against pathogens. Using bioinformatics approach, we identified and annotated 104 NBS-LRR genes in chickpea. Phylogenetic analysis points to their diversification into two families namely TIR-NBS-LRR and non-TIR-NBS-LRR. Gene architecture revealed intron gain/loss events in this r...
متن کامل